Just got word that Tech-Report.com have posted an editorial called ATI's Radeon 9700 versus NVIDIA's NV30 - Understanding the next generation of graphics chips. Here's a byte from their article:
We've talked about NV30's potential leg up on ATI's R300. ATI's advantage right now is much simpler: they have a great chip ready to roll immediately. The Radeon 9700 should simply outclass anything else on the market by miles when it hits store shelves. I've seen the Radeon 9700 demonstrate in real time many of the capabilities discussed above, and I can tell you: it's for real.
NVIDIA's challenge is a little more complex. NVIDIA is banking on making the NV30 superior to the competition by harnessing a pair of new technologies: TSMC's 0.13-micron chip fabrication process and some kind of DDR-II-like memory. ATI played it safe and went with 0.15-micron fab technology for manufacturing the R300. NVIDIA's use of 0.13-micron tech could give NV30 lower costs, less heat, and higher clock speeds, but TSMC's ability to produce 0.13-micron chips in volume is unproven. The same goes for DDR-II memory, which holds promise, but could prove difficult and costly to implement or manufacture. NVIDIA risks delaying NV30 significantly by employing bleeding-edge tech. For the full editorial warp 2 ... Tech-report.com.
We've talked about NV30's potential leg up on ATI's R300. ATI's advantage right now is much simpler: they have a great chip ready to roll immediately. The Radeon 9700 should simply outclass anything else on the market by miles when it hits store shelves. I've seen the Radeon 9700 demonstrate in real time many of the capabilities discussed above, and I can tell you: it's for real.
NVIDIA's challenge is a little more complex. NVIDIA is banking on making the NV30 superior to the competition by harnessing a pair of new technologies: TSMC's 0.13-micron chip fabrication process and some kind of DDR-II-like memory. ATI played it safe and went with 0.15-micron fab technology for manufacturing the R300. NVIDIA's use of 0.13-micron tech could give NV30 lower costs, less heat, and higher clock speeds, but TSMC's ability to produce 0.13-micron chips in volume is unproven. The same goes for DDR-II memory, which holds promise, but could prove difficult and costly to implement or manufacture. NVIDIA risks delaying NV30 significantly by employing bleeding-edge tech. For the full editorial warp 2 ... Tech-report.com.